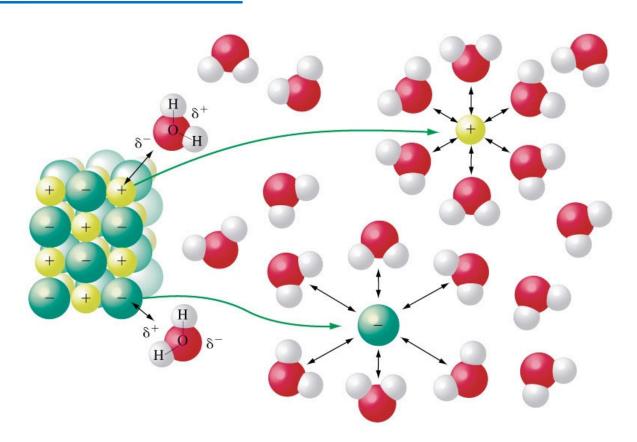
6. Propriétés des solutions



Dissolution et solvatation

Les solides se dissolvent dans un solvant lorsque leurs molécules ou leurs ions sont attirées par les molécules du solvant et se séparent du cristal.

Les interactions existant en solution entre les molécules ou les ions séparés du solide et les molécules du solvant stabilisent le soluté en entourant chaque particule d'une sphère de molécules de solvant. Ce processus est appelé *solvatation*.

La solution est réputée être une *solution saturée* lorsque le soluté dans la solution est en équilibre dynamique avec le solide non dissout.

Enthalpie de dissolution

La chaleur libérée ou absorbée par mole lorsqu'une substance se dissout à P = cste pour former une solution très diluée est appelée *enthalpie de dissolution*, et est notée dans les conditions standard ΔH^0_{sol} .

Le phénomène de dissolution peut être vu comme la succession de deux étapes virtuelles : Dans la première, les ions ou les molécules du solide doivent vaincre leur attraction réciproque et <u>rompre la cohésion</u> du solide pour se séparer. Cette étape est naturellement endothermique et son enthalpie correspond à l'<u>enthalpie de cohésion</u> du solide $\Delta H^0_{coh} > 0$. La seconde étape consiste en la <u>solvatation</u> des particules séparés du solide par les molécules de solvant. Ce processus qui crée des liaisons ions-solvant est exothermique. La chaleur libérée correspond à une <u>enthalpie de solvatation</u> (ou <u>d'hydratation</u> dans le cas de H_2O) $\Delta H^0_{hyd} < 0$.

Comme $\Delta H^0_{sol} = \Delta H^0_{coh} + \Delta H^0_{hyd}$, suivant que $|\Delta H^0_{hyd}|$ est plus grand ou plus petit que $|\Delta H^0_{coh}|$, en valeur absolue, ΔH^0_{sol} pourra être positive ou négative.c

Sel	ΔH ⁰ _{sol} [kJ·mol ^{−1}]	Cation	ΔH ⁰ _{hyd} [kJ·mol ^{−1}]	Anion	ΔH ⁰ _{hyd} [kJ·mol ^{−1}]
LiF	+ 4.9	Li ⁺	– 558	F ⁻	- 483
NaCl	+ 3.9	Na+	- 444	Cl ⁻	- 340
CaBr ₂	- 103.1	Ca ²⁺	– 1657	Br ⁻	– 309
AII_3	– 385	Al ³⁺	– 2537	I-	– 296

3

Solubilité et entropie

Le tableau de la page précédente montre que la dissolution de NaCl, par exemple, est un processus endothermique. De même, dans le cas du nitrate de potassium KNO₃, un sel pourtant très soluble, l'enthalpie de dissolution est de ΔH^{0}_{sol} = + 35 kJ·mol⁻¹.

Du point de vue entropique, le passage des ions de leur arrangement ordonné dans le solide cristallin à un état solvaté, mais globalement plus désordonné, fait <u>augmenter l'entropie</u>. D'autre part, la solvatation étant une organisation locale des molécules autour des ions, elle tend à faire <u>diminuer l'entropie</u>. En général, le bilan entropique favorise la dissolution du solide cristallin. $\Delta S_{sol} > 0$ permet donc de compenser une enthalpie de dissolution ΔH_{sol} positive en aboutissant à une enthalpie libre $\Delta G_{sol} < 0$ et donc aux conditions dans lesquelles la <u>dissolution sera spontanée</u>.

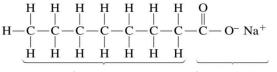
$$\Delta G_{sol} = \Delta H_{sol} - T \cdot \Delta S_{sol}$$

Le bilan entropique peut devenir défavorable cependant dans les cas où les ions sont petits, porteurs d'une densité de charge élevée, car ils auront tendance à être plus fortement solvatés, attirant et ordonnant un plus grand nombre de molécules de solvant autour d'eux. Dans le cas de la dissolution de gaz, le bilan entropique sera généralement défavorable : $\Delta S_{sol} < 0$.

 $\Delta S_{sol} > 0$ implique que ΔG_{sol} diminue avec une augmentation de la température, donc que la <u>solubilité augmente</u> avec T. Par contre, si $\Delta S_{sol} < 0$ (solution d'un gaz par exemple), alors ΔG_{sol} augmente avec T: la <u>solubilité diminue</u> avec l'augmentation de T.

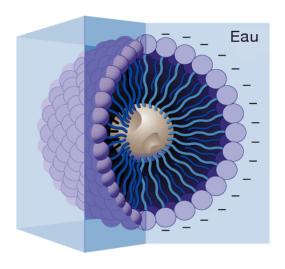
Règle de similitude

La solubilité d'une substance dépend du choix du solvant et de la substance elle-même. NaCl par exemple est très soluble dans l'eau mais insoluble dans le benzène. Inversement, la graisse (des molécules à longue chaîne hydrocarbonée) se dissout dans le benzène, mais pas dans l'eau.


La *règle de similitude* veut que des molécules aux caractéristiques semblables puissent agir réciproquement comme solvant et soluté. Cette règle reflète le fait que les attractions entre les particules du soluté à l'état solide doivent être remplacées par des attractions soluté-solvant lorsque la solution se forme. Si les nouvelles interactions sont semblables à celles qu'elles remplacent, il faut très peu d'énergie pour former la solution.

Des solides ioniques et des molécules facilement <u>polarisables</u> seront dissous par des *solvants polaires*, dont les molécules sont porteuses d'un dipôle électrique (comme l'eau ou l'acétone, par exemple). On parlera volontiers dans ce cas de substance *hydrophiles*.

Des *molécules apolaires* (sans charge électrostatique ni dipôle électrique et difficilement polarisables) ne se dissoudront que dans des solvants également <u>apolaires</u>. Les interactions avec un solvant polaire, tel que l'eau, se solderont pour des molécules apolaires par un changement de l'enthalpie libre positif $\Delta G_{sol} > 0$. On parlera alors d'interactions *hydrophobes*.


Molécules amphiphiles

chaîne apolaire tête polaire

<u>Les savons et les détergents</u> constituent une application de la règle de similitude. Les savons sont des sels de sodium d'acides carboxyliques à longue chaîne, tel que l'octanoate représenté ici. Les anions (ions négatifs) de ces molécules possèdent à la fois une <u>tête polaire</u> hydrophile et une chaîne hydrocarbure <u>apolaire</u> hydrophobe. On parle de *molécules amphiphiles*.

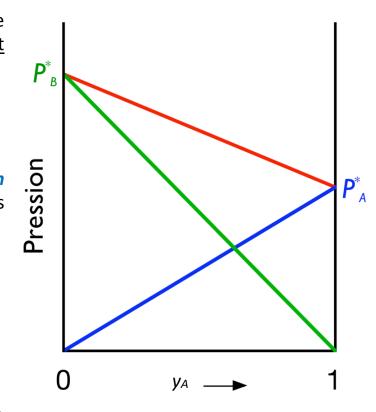
C'est cette double aptitude qui permet aux molécules de détergent de dissoudre les graisses dans l'eau. Les chaînes apolaires plongent dans la goutte de graisse en formant une sphère, appelée *micelle*, dont la structure tri-dimensionnelle tend à mi-nimiser les interactions hydrophobes. Les têtes ioniques restées en surface assurent par ailleurs la solubilité de l'ensemble dans l'eau.

Loi der Raoult

Quand un liquide A dans un mélange est en équilibre avec sa vapeur sous une pression partielle P_A , les potentiels chimiques de A dans les deux phases sont égaux :

$$\mu_A$$
 (I) = μ_A (g) , or nous savons déjà que μ_A (g) = μ^0_A + RT·In (P_A / P^0)

Par analogie, dans le liquide, nous aurons: $\mu_A(I) = \mu^*_A + RT \cdot \ln \alpha_A(I)$

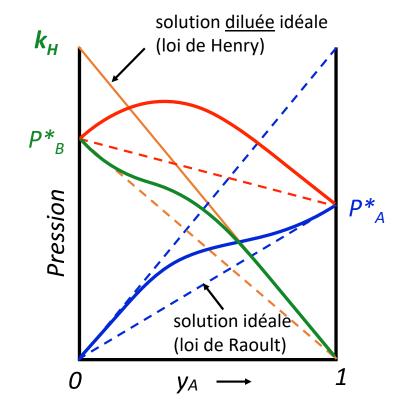

où μ^*_A est le potentiel chimique de A à l'état liquide pur. Dans une **solution idéale**, l'activité a_A du constituant A est donnée par sa fraction molaire y_A dans le liquide. Il découle alors :

$$\mu_A$$
 (I) = μ^*_A + RT·ln $y_A = \mu^0_A$ + RT·ln (P_A / P^0)

Si on passe d'une pression P^0 à une pression P^*_A , correspondant à la pression de vapeur de A pur:

$$\mu^*_A = \mu^0_A + RT \cdot \ln (P^*_A / P^0)$$
 et $P_A = y_A \cdot P^*_A$

La pression partielle P_j de la vapeur d'un constituant dans un mélange est proportionnelle à sa fraction molaire y_j dans la solution et à sa pression de vapeur P_j^* à l'état pur (*loi de Raoult*),


Loi de Henry

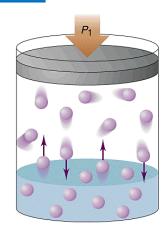
La loi de Raoult est une bonne description de la pression de vapeur P_A <u>du solvant A</u> dans une solution très diluée. Elle ne s'applique pas bien toutefois au soluté B. Dans une solution diluée, le soluté est en effet très loin de se trouver dans sa forme pure.

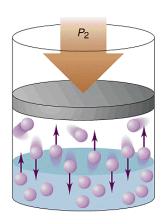
On trouve expérimentalement que la pression partielle de vapeur P_B <u>du</u> <u>soluté</u> B, par exemple de l'éthanol dilué dans l'eau, est en fait proportionnelle à sa fraction molaire y_B (I).

A la différence du solvant, la constante de proportionnalité n'est cependant pas égale à la pression de vapeur P_B^* du soluté pur.

Loi de Henry:
$$P_B = y_B(I) \cdot \mathcal{K}_H$$

La constante de Henry $\mathcal{K}_{\mathcal{H}}$ est caractéristique du soluté. Elle est choisie de sorte que la droite $P_B = f(y_B)$ soit tangente à la courbe expérimentale en $y_B = 0$ ($y_A = 1$).


Les solutions suffisamment diluées pour que le soluté obéisse à la loi de Henry sont dites solutions diluées idéales.


Solubilité des gaz

La loi de Henry permet de prévoir la solubilité d'un gaz dans un solvant. La fraction molaire du gaz en solution est proportionnelle à la pression partielle P_B du gaz au-dessus de la solution et donc à la pression totale $P: P_B = x_B$ (g) $\cdot P$

$$y_B(I) = P_B / K_H = x_B(g) \cdot P / \mathcal{K}_H$$

La solubilité du gaz dans le solvant, donnée par y_B (I), est d'autant plus grande que la constante de Henry est faible.

	k _н [Torr] à 20° С				
Soluté	H₂O	Benzène			
CH ₄	3.14·10 ⁵	4.27·10⁵			
CO ₂	1.25⋅10 ⁶	8.57·10 ⁴			
H ₂	5.34·10 ⁷	2.75·10 ⁶			
N ₂	6.51·10 ⁷	1.79·10 ⁶			
O ₂	3.30·10 ⁷	1.14·10 ⁶			

Propriétés colligatives

Un soluté modifie l'entropie d'une solution en introduisant un degré de désordre absent du solvant pur. On peut donc s'attendre à ce qu'il change ses propriétés physiques.

Outre l'<u>abaissement de la pression de vapeur</u> du solvant, déjà traité par la loi de Raoult, un soluté non volatil exerce trois influences principales:

- 1) Il entraîne une <u>élévation de la température d'ébullition</u> d'une solution
- 2) Il provoque un <u>abaissement de la température de congélation</u>
- 3) Il induit une <u>pression osmotique</u>

Ces quatre effets ne dépendent que du <u>nombre de particules</u> du soluté présentes et non pas de leur nature chimique. C'est pour cette raison que ces propriétés sont qualifiées de *colligatives* ("qui dépendent de l'ensemble").

Une solution aqueuse à $c_m = 0.01 \text{ mol·kg}^{-1}$ d'un non-électrolyte, par exemple, devrait avoir le même point d'ébullition, le même point de congélation et la même pression osmotique, quel que soit la nature du non-électrolyte. Une mole de NaCl libère en se dissociant en solution aqueuse deux fois plus de particules (en l'occurrence une mole de chacun des ions Na⁺ et Cl⁻) qu'une mole d'un non-électrolyte, tel que le sucrose par exemple. On s'attend donc à ce que l'effet sur les propriétés physiques du solvant soit plus important à concentrations molaires identiques pour un électrolyte que pour un non-électrolyte.

Potentiel chimique du solvant

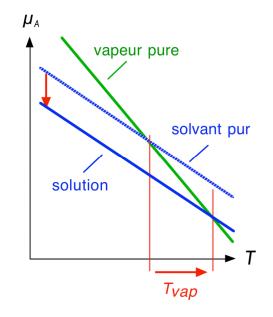
Pour comprendre l'origine des effets colligatifs, faisons les deux hypothèses suivantes:

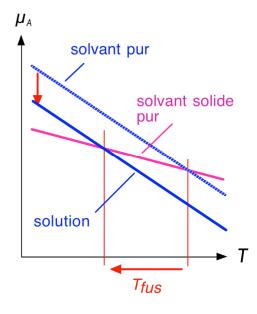
- a) Le soluté n'est pas volatil et donc ne contribue pas à la vapeur au-dessus de la solution.
- b) Le soluté n'est pas soluble dans le solvant solide et donc la solution congelée contient du solvant pur

L'origine de tous les effets colligatifs est la diminution du potentiel chimique du <u>solvant liquide A</u>, due à la présence d'un soluté, comme l'exprime la relation :

$$\mu_A(I) = \mu^*_A + RT \cdot In \ a_A$$
 avec: $a_A = y_A$

En présence d'un soluté $y_A < 1$, ln $a_A < 0$ et donc $\mu_A < \mu^*_A$. Les potentiels chimiques de la vapeur et du solvant congelé, par contre, ne changent pas du fait de la présence du soluté, puisque celui-ci n'est ni volatil, ni soluble dans le solide.


En vertu de la relation dG = dH - TdS, le potentiel chimique du solvant μ_A (son enthalpie libre molaire partielle) dans ses trois phases, gazeuse, liquide et solide, diminue linéairement avec la température T.


La diminution de μ_A avec la température est d'autant plus rapide que l'entropie S du solvant est grande. Comme l'entropie S de la vapeur est supérieure à celle du liquide, qui à son tour est supérieure à celle du solide, la droite $\mu_A = f(T)$ aura la pente la plus importante dans le cas de la vapeur et la plus faible dans le cas du solide.

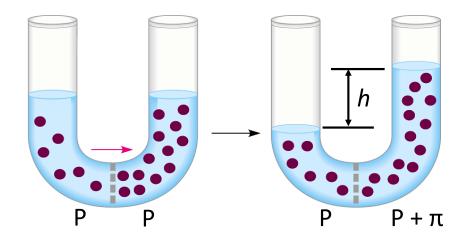
Equilibres de phases

Le point d'intersection des droites $\mu_A = f(T)$ indique la température où le potentiel chimique du solvant est identique dans les deux phases et donc une situation où ces dernières sont en équilibre.

Les graphiques ci-dessous montrent que l'abaissement de la courbe du potentiel chimique $\mu_A = f(T)$ du solvant en présence de soluté implique bien une <u>élévation de la température d'ébullition</u> T_{vap} (équilibre entre solution liquide et solvant sous forme vapeur) et un <u>abaissement de la température de congélation</u> (ou de fusion) T_{fus} (équilibre entre solution liquide et solvant solide).

Constantes ébullioscopiques et cryoscopiques

On trouve empiriquement (et on peut le justifier thermodynamiquement) que l'élévation de la température d'ébullition (ou point d'ébullition) ΔT_{vap} et l'abaissement de la température de congélation (ou point de congélation) ΔT_{fus} sont tous deux proportionnels à la molalité colligative c_m de toutes les espèces du soluté :


$$\frac{\Delta T_{vap} = + K_b \cdot c_m}{\Delta T_{fus} = - K_f \cdot c_m}$$

K_b [K⋅kg⋅mol⁻¹] est la *constante ébullioscopique* du solvant, et

K_f [K⋅kg⋅mol⁻¹] sa *constante cryoscopique*.

Solvant	T _{fus} [°C]	K _f [K∙kg∙mol ^{–1}]	T _{vap} [°C]	K₀ [K·kg·mol ⁻¹]
acétone	-95.35	2,4	56,2	1.71
CCI ₄	-23	29,8	76,5	4,95
benzène	5,5	5.12	80.1	2,53
cyclohexane	6,5	20.1	80,7	2,79
eau	0	1.86	100	0.51
phénol	43	7,27	182	3,04

Pression osmotique

On appelle *osmose* (d'un mot grec signifiant "poussée") le phénomène de passage d'un solvant pur dans une solution dont il est séparé par une *membrane semi-perméable*.

Une telle membrane comporte des pores nanométriques (mesoscopiques) laissant passer le solvant, mais bloquant les particules du soluté.

Le solvant circule du compartiment de plus faible concentration en soluté vers celui caractérisé par la plus forte concentration et tend donc à égaliser les concentrations de part et d'autre de la membrane.

La *pression osmotique* π est la pression que l'on doit appliquer à la solution pour stopper l'écoulement.

L'un des exemples les plus importants d'osmose est la circulation de fluides à travers les membranes cellulaires.

Dans le dispositif simple présenté dans le schéma ci-dessus, la pression qui s'oppose au passage du solvant provient de la hauteur h de la colonne de solution produite par le phénomène d'osmose lui-même.

Equation de van't Hoff pour la pression osmotique

Le potentiel chimique du solvant est le même de chaque côté de la membrane :

$$\mu_A$$
 (y_A , $P + \pi$) = μ^*_A (P) , or on sait déjà que μ_A (I) = μ^*_A + R T ·In y_A

on a donc :
$$\mu_A(I) = \mu^*_A(P + \pi) + RT \cdot \ln y_A = \mu^*_A(P) \implies \Delta \mu^*_A = -RT \cdot \ln y_A$$

On se souvient également que $dG = V \cdot dP$. On aura donc :

$$\Delta \mu^*_A = \mu^*_A (P + \pi) - \mu^*_A (P) = V_A \cdot \Delta P = V_A \cdot \pi \implies V_A \cdot \pi = -RT \cdot \ln y_A$$

La fraction molaire y_A du solvant est liée à la fraction molaire du soluté y_B par : $y_A = 1 - y_B$. Dans une solution diluée les approximations suivantes peuvent être faites :

$$ln(1-y_B) \approx -y_B$$
, $y_B = n_B / n_{tot} \approx n_B / n_A$, et $y_A \cdot V_A \approx V$.

On aura donc au final:

$$\pi \cdot V \approx n_B RT$$
 ou $\pi \approx [soluté] \cdot RT$

Cette relation approchée est appelée l'équation de van't Hoff pour la pression osmotique. On notera la similitude de cette équation avec celle des gaz parfaits!

Dans la plupart des cas, les approximations faites pour les solutions très diluées ne tiennent pas et l'équation de van't Hoff ne s'applique que pour [soluté] \rightarrow 0.

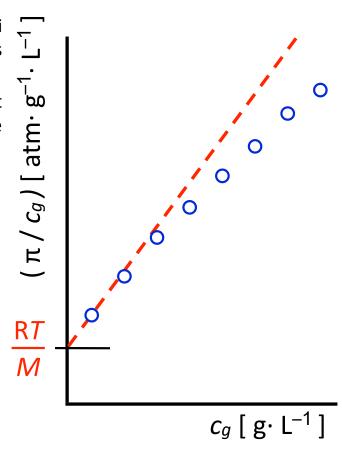
15

Osmométrie

L'une des applications les plus courantes de l'osmose est l'*osmométrie*, qui est la mesure des masses molaires des protéines et des polymères synthétiques à partir de la pression osmotique de leurs solutions.

Ces volumineuses molécules se dissolvent en donnant des solutions qui sont loin d'être idéales. On suppose alors que la loi de van't Hoff ne représente que le premier terme d'un développement (un viriel) :

$$\pi = [\text{soluté}] \cdot RT \{ 1 + B [\text{soluté}] + C [\text{soluté}]^2 + ... \}$$


où B, C,... sont les coefficients du viriel osmotique.

La concentration molaire du soluté est liée à la concentration massique c_q [g·L⁻¹] par:

 $c_q = M \cdot [\text{soluté}]$, où M est sa masse molaire.

$$\frac{\pi}{c_g} = \frac{RT}{M} + \frac{B \cdot RT}{M^2} c_g + \frac{C \cdot RT}{M^3} c_g^2$$

(π / c_g) = f(c_g) est un polynôme dont l'extrapolation à l'origine (c_g = 0) fournit directement la masse molaire sous la forme du rapport RT / M.

